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Abstract

This paper proposes two numerical solution based on Product Optimal Quan-
tization for the pricing of Bermudan options on Foreign Exchange (FX). More
precisely, Bermudan Power Reverse Dual Currency options, where we take into
account stochastic domestic and foreign interest rates on top of stochastic FX
rate, hence we consider a 3-factor model. For these two numerical methods,
we give an estimation of the L2-error induced by such approximations and we
illustrate them with market-based examples that highlight the speed of such
methods.

Keywords— Foreign Exchange rates; Bermudan Options; Numerical method; Power Reverse Dual
Currency; Product Optimal Quantization.

Introduction

Persistent low levels of interest rates in Japan in the latter decades of the 20th century were one
of the core sources that led to the creation of structured financial products responding to the
need of investors for coupons higher than the low yen-based ones. This started with relatively
simple dual currency notes in the 80s where coupons were linked to foreign (i.e. non yen-based)
currencies enabling payments of coupons significantly higher. As time (and issuers’ competition)
went by, such structured notes were iteratively “enhanced” to reverse dual currency, power reverse
dual currency (PRDC), cancellable power reverse dual currency etc., each version adding further
features such as limits, early repayment options, etc. Finally, in the early 2000s, the denomination
xPRD took root to describe those structured notes typically long-dated (over 30y initial term)
and based on multiple currencies (see [Wys17]). The total notional invested in such notes is likely
to be in the hundreds of billions of USD. The valuation of such investments obviously requires
the modeling of the main components driving the key risks, namely the interest rates of each
pair of currencies involved as well as the corresponding exchange rates. In its simplest and most
popular version, that means 3 sources of risk: domestic and foreign rates and the exchange rate.
The 3-factor model discussed herein is an answer to that problem.

Gradually, as the note’s features became more and more complex, further refinements to the
modeling were needed, for instance requiring the inclusion of the volatility smile, the dependence
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of implied volatilities on both the expiry and the strike1 of the option, prevalent in the FX
options market. Such more complete modeling should ideally consist in successive refinements
of the initial modeling enabling consistency across the various flavors of xPRDs at stake.

The model discussed herein was one of the answers popular amongst practitioners for multiple
reasons: it was accounting for the main risks – interest rates in the currencies involved and
exchange rates – in a relatively simple manner and the numerical implementations proposed at
that time were based on simple extensions of well-known single dimensional techniques such as
3 dimensional trinomial trees, PDE based method (see [Pit05]) or on Monte Carlo simulations.

Despite the qualities of these methods, the calculation time could be rather slow (around 20
minutes with a trinomial tree for one price), especially when factoring in the cost for hedging (that
is, measuring the sensitivities to all the input parameters) and even more post 2008, where the
computation of risk measures and their sensitivities to market values became a central challenge
for the financial markets participants. Indeed, even though these products were issued towards
the end of the 20th century, they are still present in the banks’s books and need to be considered
when evaluating counterparty risk computations such as Credit Valuation Adjustment (CVA),
Debt Valuation Adjustment (DVA), Funding Valuation Adjustment (FVA), Capital Valuation
Adjustment (KVA), ..., in short xVA’s (see [BMP13, CBB14, Gre15] for more details on the
subject). Hence, a fast and accurate numerical method is important for being able to produce
the correct values in a timely manner. The present paper aims at providing an elegant and
efficient answer to that problem of numerical efficiency based on Optimal Quantization. Our
novel method allows us reach a computation time of 1 or 2 seconds at the expense of a systematic
error that we quantify in Section 3.

Let P pt, T q be the value at time t of one unit of the currency delivered (that is, paid) at
time T , also known as a zero coupon price or discount factor. A few iterations were needed by
researchers and practitioners before the seminal family of Heath-Jarrow-Morton models came
about. The general Heath-Jarrow-Morton (HJM) family of yield curve models can be expressed
as follows – although originally expressed by its authors in terms of rates dynamics, the two are
equivalent, see [HJM92] – in a n-factor setting, we have for the curve P pt, T q that

dP pt, T q

P pt, T q
“ rtdt`

ÿ

i

σi
`

t, T, P pt, T q
˘

dW i
t

where rt is the (stochastic) instantaneous rate at time t barrer (therefore a random variable),
W i, i “ 1, ¨ ¨ ¨ , n are n correlated Brownian motions and σi

`

t, T, P pt, T q
˘

are volatility functions
in the most general settings (with the obvious constraint that σi

`

T, T, P pT, T q
˘

“ 0). Indeed, the
general HJM framework allows for the volatility functions σi

`

t, T, P pt, T q
˘

to also depend on the
yield curve’s (random) levels up to t – actually through forward rates – and therefore be random
too. However, it has been demonstrated in [EKMV92] that, to keep a tractable version (i.e. a
finite number of state variables), the volatility functions must be of a specific form, namely, of
the mean-reverting type (where the mean reversion can also depend on time). We use this way
of expressing the model as a mean to recall that such model is essentially the usual and well-
known Black Scholes model applied to all and any zero-coupon prices, with various enhancements
regarding number of factors and volatility functions, to keep the calculations tractable. For
further details and theory, one can refer to some of the following articles [EKFG96, EKMV92,
HJM92, BS73]. Of course, such a framework can be applied to any yield curve. In its simplest
form (i.e. flat volatility and one-factor), we have under the risk-neutral measure

dP pt, T q

P pt, T q
“ rtdt` σpT ´ tqdWt (0.1)

1In the case of the FX, the implied volatility is expressed in function of the delta.
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whereW is a standard Brownian motion under the risk-neutral probability. In that case, σ is the
flat volatility, which means the volatility of (zero-coupon) interest rates. That is often referred
to as a Hull-White model without mean reversion (see [HW93]) or a continuous-time version of
the Ho-Lee model. In the rest of the paper, we work with the model presented in (0.1) for the
diffusion of the zero coupon although the extension to non-flat volatilities is easily feasible.

About the Foreign Exchange (FX) rate, we denote by St the value at time t ą 0 of one unit
of foreign currency in the domestic currency. Its dynamics is driven by a Black-Scholes diffusion
model with the following equation

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t

where rdt and rf are the instantaneous rates at time t of the domestic and foreign currency
respectively, both supposed to be stochastic, σS is the (deterministic) volatility of the FX rate
and WS is a standard Brownian motion under the domestic risk-neutral probability.

Let us briefly recall the principle of the adopted numerical method, Optimal quantization.
Optimal Quantization is a numerical method whose aim is to approximate optimally, for a given
norm, a continuous random signal by a discrete one with a given cardinality at most N . [She97]
was the first to work on it for the uniform distribution on unit hypercubes. Since then, it has been
extended to more general distributions with applications to Signal transmission in the 50’s at the
Bell Laboratory (see [GG82]). Formally, let Z be an Rd-valued random vector with distribution
PZ defined on a probability space pΩ,A,Pq such that Z P L2pPq. We search for ΓN , a finite
subset of Rd defined by ΓN :“ tzN1 , . . . , z

N
N u Ă R

d, solution to the following problem

min
ΓNĂR

d,|ΓN |ďN
}Z ´ pZN}2

where pZN denotes the nearest neighbour projection of Z onto ΓN . This problem can be extended
to the Lp-optimal quantization by replacing the L2-norm by the Lp-norm but this not in the scope
of this paper. In our case, we mostly consider quadratic one-dimensional optimal quantization,
i.e d “ 1 and p “ 2. The existence of an optimal quantizer at level N goes back to [CAGM97] (see
also [Pag98, GL00] for further developments). In the one-dimensional case, if the distribution
of Z is absolutely continuous with a log-concave density, then there exists a unique optimal
quantizer at level N , see [Kie83]. We scale to the higher dimension using Optimal Product
Quantization which deals with multi-dimensional quantizers built by considering the cartesian
product of one-dimensional optimal quantizers.

Considering again Z “ pZ`q`“1:d, a Rd-valued random vector. First, we look separately at
each component Z` independently by building a one-dimensional optimal quantization pZ` of size
N `, with quantizer ΓN`` “

 

z`i` , i` P t1, ¨ ¨ ¨ , N`u
(

and then, by applying the cartesian product
between the one-dimensional optimal quantizers, we build the product quantizer ΓN “

śd
`“1 ΓN``

with cardinality N “ N1 ˆ ¨ ¨ ¨ ˆNd by

ΓN “
 

pz1
i1 , ¨ ¨ ¨ , z

`
i`
, ¨ ¨ ¨ , zdidq, i` P t1, ¨ ¨ ¨ , N`u, ` P t1, ¨ ¨ ¨ , du

(

.

Then, in the 1990s, [Pag98] developed quantization-based cubature formulas for numerical
integration purposes and expectation approximations. Indeed, let f be a continuous function
f : Rd ÝÑ R such that fpZq P L1pPq, we can define the following quantization-based cubature
formula using the discrete property of the quantizer pZN

E
“

fp pZN q
‰

“

N
ÿ

i“1

pifpz
N
i q
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where pi “ Pp pZN “ zNi q. Then, one could want to approximate E
“

fpZq
‰

by E
“

fp pZN q
‰

when
the first expression cannot be computed easily. For example, this case is exactly the problem
one encounters when trying to price European options. We know the rate of convergence of the
weak error induced by this cubature formula, i.e Dα P p0, 2s, depending on the regularity of f
such that

lim
NÑ`8

Nα
ˇ

ˇE
“

fpZq
‰

´ E
“

fp pZN q
‰ˇ

ˇ ď Cf,X ă `8.

For more results on the rate of convergence, the value of α, we refer to [Pag18] for a survey in
Rd and to [LMP19] for recent improved results in the one-dimensional case.

Later on, in a series of papers, among them [BP03, BPP05] extended this method to the
computation of conditional expectations allowing to deals with nonlinear problems in finance
and, more precisely, to the pricing and hedging of American/Bermudan options, which is the
part we are interested in. These problems are of the form

sup
τ
E
“

e´
şτ
0 r

d
sds ψτ pSτ q

‰

where
`

e´
ştk
0 rdsds ψtkpStkq

˘

k“0,...,n
is the obstacle function and τ : Ω Ñ tt0, t1, . . . , tnu is a stop-

ping time for the filtration pF tkqkě0 where F t “ σ
`

Ss, P
dps, T q, P f ps, T q, s ď t

˘

is the natural
filtration to consider because the foreign exchange rate and the zero-coupon curves are observ-
ables in the market.

In this paper, we will present two numerical solutions, motivated by the works described
above, to the problem of the evaluation of Bermudan option on Foreign Exchange rate with
stochastic interest rates. The paper is organised as follows. First, in Section 1, we introduce
the diffusion models for the zero coupon curves and the foreign exchange rate we work with. In
Section 2, we describe in details the financial product we want to evaluate: Bermudan option on
foreign exchange rate. In this Section, we express the Backward Dynamic Programming Principle
and study the regularity of the obstacle process and the value function. Then, in Section 3,
we propose two numerical solutions for pricing the financial product defined above based on
Product Quantization and we study the L2-error induced by these numerical approximations.
In Section 4, several examples are presented in order to compare the two methods presented
in Section 3. First, we begin with plain European option, this test is carried out in order to
benchmark the methods because a closed-form formula is known for the price of a European
Call/Put in the 3-factor model. Then, we compare the two methods in the case of a Bermudan
option with several exercise dates. Finally, in Appendix A, we make some change of numéraire
and in Appendix B, we give the closed-form formula for the price of an European Call, in the
3-factor model, used in Section 4 as a benchmark.

1 Diffusion Models

Interest Rate Model. We shall denote by P pt, T q the value at time t of one unit of the
currency delivered (that is, paid) at time T , also known as a zero coupon price or discount
factor. When t is today, this function can usually be derived from the market price of standard
products, such as bonds and interest rate swaps in the market, along with an interpolation
scheme (for the dates different than the maturities of the market rates used). In a simple
single-curve framework, the derivation of the initial curve, that is, the zero coupons P p0, T q
for T ą 0 is rather simple, through relatively standard methods of curve stripping. In more
enhanced frameworks accounting for multiple yield curves such as having different for curves for
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discounting and forward rates, those methods are somewhat more demanding but still relatively
straightforward. We focus herein on the simple single-curve framework.

In our case we are working with financial products on Foreign Exchange (FX) rates between
the domestic and the foreign currency, hence we will be working with zero coupons in the domestic
currency denoted by P dpt, T q and zero coupons in the foreign currency denoted by P f pt, T q. The
diffusion of the domestic zero-coupon curve under the domestic risk-neutral probability P is given
by

dP dpt, T q

P dpt, T q
“ rdt dt` σdpT ´ tqdW

d
t

where W d is a P-Brownian Motion, rdt is the domestic instantaneous rate at time t and σd is the
volatility for the domestic zero coupon curve. For the foreign zero-coupon curve, the diffusion is
given, under the foreign neutral probability rP, by

dP f pt, T q

P f pt, T q
“ rft dt` σf pT ´ tqd

ĂW f
t

where ĂW f is a rP-Brownian Motion, rft is the foreign instantaneous rate at time t and σf is
the volatility for the foreign zero coupon curve. Both volatilities σd and σf are positive real
constants. The two probabilities rP and P are supposed to be equivalent, i.e rP „ P and it exists
ρdf defined as limit of the quadratic variation xW d,ĂW f yt “ ρdf t.

Remark. Such a framework to model random yield curves has been quite popular with practi-
tioners due to its elegance, simplicity and intuitive understanding of rates dynamics through time
yet providing a comprehensive and consistent modelling of an entire yield curve through time.
Indeed, it is mathematically and numerically easily tractable. It carries no path dependency and
allows the handling of multiple curves for a given currency as well as multiple currencies – and
their exchange rates – as well as equities (when one wishes to account for random interest rates).
It allows negative rates and can be refined by adding factors (Brownian motions).

However, it cannot easily cope with smile or non-normally distributed shocks or with internal
curve ”oddities” or specifics such as different volatilities for different swap tenors within the same
curve dynamics. Nonetheless, our aim being to propose a model and a numerical method which
make possible to produce risk computations (such as xVA’s) in an efficient way, these properties
are of little importance. That said, when it comes to deal with accounting for random rates in
long-dated derivatives valuations, its benefits far outweigh its limitations and its use for such
applications is popular, see [NP14] for the pricing of swaptions, [Pit05] for PRDCs...

Foreign Exchange Model. The diffusion of the foreign exchange (FX) rate defined under
the domestic risk-neutral probability is

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t

where WS
t is a P-Brownian Motion under the domestic risk-neutral probability such that their

exist ρSd and ρSf P r´1, 1s defined as limit of the quadratic variations xWS ,W dyt “ ρSdt and
xWS ,ĂW f yt “ ρSf t, respectively.
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Finally, the processes, expressed in the domestic risk-neutral probability P, are
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dP dpt, T q

P dpt, T q
“ rdt dt` σdpT ´ tqdW

d
t

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t

dP f pt, T q

P f pt, T q
“

`

rft ´ ρSfσSσf pT ´ tq
˘

dt` σf pT ´ tqdW
f
t

(1.1)

whereW f , defined by dW f
s “ dĂW f

s `ρSfσSds, is a P-Brownian motion, as shown in Appendix A.
Note at this stage, that the zero-coupons P dp0, tq and P f p0, tq are the quoted prices at time 0
in their respective markets of one unit of domestic and foreign currency. In particular these are
deterministic quantities since they are are observable at time 0.

Using Itô’s formula, we can explicitly express the processes
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

P dpt, T q “ P dp0, T q exp

˜

ż t

0

ˆ

rds ´
σ2
dpT ´ sq

2

2

˙

ds` σd

ż t

0
pT ´ sqdW d

s

¸

St “ S0 exp

˜

ż t

0

ˆ

rds ´ r
f
s ´

σ2
S

2

˙

ds` σSW
S
t

¸

P f pt, T q “ P f p0, T q exp

˜

ż t

0

ˆ

rfs ´ ρSfσSσf pT ´ sq ´
σ2
f pT ´ sq

2

2

˙

ds` σf

ż t

0
pT ´ sqdW f

s

¸

.

From these equations, we deduce exp

ˆ

´
şt
0 r

d
sds

˙

and exp

ˆ

´
şt
0 r

f
s ds

˙

, by taking T “ t and

using that P dpt, tq “ P f pt, tq “ 1, it follows that
$

’

’

’

&

’

’

’

%

exp

ˆ

´

ż t

0
rdsds

˙

“ ϕdptq exp

ˆ

σd

ż t

0
pt´ sqdW d

s

˙

exp

ˆ

´

ż t

0
rfs ds

˙

“ ϕf ptq exp

ˆ

σf

ż t

0
pt´ sqdW f

s

˙

,

where

ϕdptq “ P dp0, tq exp

ˆ

´ σ2
d

ż t

0

pt´ sq2

2
ds

˙

and

ϕf ptq “ P f p0, tq exp

˜

´

ż t

0

ˆ

ρSfσSσf pt´ sq `
σ2
f pt´ sq

2

2

˙

ds

¸

.

These expressions for the domestic and the foreign discount factors will be useful in the following
sections of the paper.

2 Bermudan options

2.1 Product Description

Let pΩ,A,Pq be our domestic risk neutral probability space. We want to evaluate the price of a
Bermudan option with maturity T ą 0 on the FX rate pStqtě0 with payoffs ψtkpStkq which can
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be exercised by its owner at predetermined dates t0 “ 0 ă t1 ă ¨ ¨ ¨ ă tk ă ¨ ¨ ¨ tn “ T . The FX
rate pStqtě0 is defined by

St “
1

exp

ˆ

´
şt
0 r

d
sds

˙S0ϕf ptq exp

ˆ

´
σ2
S

2
t` σSW

S
t ` σf

ż t

0
pt´ sqdW f

s

˙

with

exp

ˆ

´

ż t

0
rdsds

˙

“ ϕdptq exp

ˆ

σd

ż t

0
pt´ sqdW d

s

˙

.

The payoff functions ψtk are non-negative Borel functions satisfying

@ k “ 0, . . . , n, E
“

ψtkpStkq
2
‰

ă `8.

At a given time t, the observable assets in the market are the foreign exchange rate St and the
zero-coupon curves

`

P dpt, T q
˘

Tět
and

`

P f pt, T q
˘

Tět
, hence the natural filtration to be considered

is
F t “ σ

`

NP, Ss, P dps, T q, P f ps, T q, s ď t
˘

“ σ
`

NP,WS
s ,W

d
s ,W

f
s , s ď t

˘

where NP denotes the P–negligible sets in A. Let τ : Ω Ñ tt0, t1, . . . , tnu be a stopping time
for pF tkqkě0 and T “ T F the set of all r0, T s-valued pF tkqkě0-stopping times. In this paper, we
consider problems where the horizon is finite then we define T nk , the set of pF tkq-stopping times
having a.s. values in ttk, . . . , tnu.

Hence, the price at time tk of the Bermudan option is given by pFtk ,Pq-Snell envelope of the
obstacle process

`

e´
ştk
0 rdsdsψtkpStkq

˘

at time tk, namely

Vk “ sup
τPT nk

E
“

e´
şτ
0 r

d
sds ψτ pSτ q | F tk

‰

and Vk is called the Snell envelope of the obstacle process
`

e´
ştk
0 rdsds ψtkpStkq

˘

0ďkďn
.

Remark. The financial products we consider in the applications are PRDC. Their payoffs (see
Figure 1) have the following expression

ψtkpxq “ min

˜

max

ˆ

Cf ptkq

S0
x´ Cdptkq,Floorptkq

˙

,Capptkq

¸

(2.1)

where Floorptkq, Capptkq, Cf ptkq and Cdptkq are known constants at time 0. More preciselly,
Floorptkq and Capptkq are the floor and cap values, and Cf ptkq and Cdptkq are the coupons value
we wish to compare to the foreign and the domestic currency, respectively.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100  120  140

Figure 1: Example of a PRDC payoff ψtkpStkq “ min
´´

0.189
Stk

88.17 ´ 0.15
¯

`
, 0.0555

¯

at time tk.
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The interesting feature of such functions is that their (right) derivative have a compact
support.

2.2 Backward Dynamic Programming Principle

As a discrete time pFtk ,Pq-Snell envelope, the sequence pVkq0ďkďn satisfies the so-called Backward
Dynamic Programming Principle (BDPP) i.e. the recursive formula:

$

&

%

Vn “ e´
ştn
0 rdsds ψtnpStnq,

Vk “ max
´

e´
ştk
0 rdsds ψtkpStkq,ErVk`1 | F tks

¯

, 0 ď k ď n´ 1
. (2.2)

To make this backward recursion numerically tractable we have to solve several problems.
The first (and main) one is to “Markovianize” the above (BDPP) by writing the payoffs ψtkpStkq
as functions of an pFtkqk“0,...,n-Markov chain. To this end, we first notice that the obstacle
process

`

e´
şt
0 r
d
sds ψtpStq

˘

t“t0,...,tn
can be rewritten (in fact for every t P r0, T s) as a function ht

of two processes Xt and Yt such that

htpXt, Ytq “ e´
şt
0 r
d
sds ψtpStq

where
htpx, yq “ ϕdptq e´y ψt

ˆ

S0
ϕf ptq

ϕdptq
e´σ

2
St{2`x`y

˙

(2.3)

and pX,Y q is defined by

pXt, Ytq “

ˆ

σSW
S
t ` σf

ż t

0
pt´ sqdW f

s ,´σd

ż t

0
pt´ sqdW d

s

˙

so that it is clearly Ft-adapted. However it is clear that the couple pXtk , Ytkqk“0,...,n is not an
pFtkq-Markov process and we need to add extra components to achieve our Markovianization.

Several choices are a priori possible to perform this re-parametrization the payoff process.
We turned to the obviously pFtkqk“0,...,n-adapted 4-tuple pX,Y,W f ,W dqt“t0,...,tn , which is in fact
an pFtkqk-Markov process as can be easily checked (see (2.4) later).

This choice is motivated by the following – slightly paradoxal – argument: the (non-Markov)
2-dimensional model process pX,Y q turns out to be very close to the Markovian model pX,Y,W f ,W dq

if one has in mind that these two Brownian motions are “weighted” in our formulas by σf and σd

which are very small in practice (few basis points (1 bps “ 10´4)). This will in turn make reason-
able our non-Markovian approximation consisting, as a second step (see Section 3.3, in forcing
the Markov property in the backward dynamic programming principle by directly conditioning
w.r.t. pXtk , Ytkq to speed up the numerical procedure). A more financial justification could be
that these quantities also appear naturally in the discount factor and in St.

From now on, in order to alleviate notations, we denote by Xk “ Xtk , W
f
k “W f

tk
, Yk “ Ytk ,

W d
k “W d

tk
, WS

k “WS
tk

and hk “ htk .
The pFkkqk“0,...,n-Markov property of pXtk ,W

f
tk
, Ytk ,W

d
tk
qk“0,...,n is a consequence of the fol-
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lowing decomposition
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Xk`1 “ Xk ` σfhW
f
k ` σS

ż tk`1

tk

dWS
s ` σf

ż tk`1

tk

ptk`1 ´ sqdW
f
s ,

W f
k`1 “W f

k `

ż tk`1

tk

dW f
s ,

Yk`1 “ Yk ´ σdhW
d
k ´ σd

ż tk`1

tk

ptk`1 ´ sqdW
d
s ,

W d
k`1 “W d

k `

ż tk`1

tk

dW d
s .

(2.4)

using that pWS ,W f ,W sq is a process with stationary independent increments. Setting h “ T
n

this can be written as
$

’

’

’

’

&

’

’

’

’

%

Xk`1 “ Xk ` σfhW
f
k `G

1
k`1

W f
k`1 “W f

k `G
2
k`1

Yk`1 “ Yk ´ σdhW
d
k `G

3
k`1

W d
k`1 “W d

k `G
4
k`1,

(2.5)

where the increments pGkqk“1,...,n are i.i.d., centered, normally distributed like G defined by

G “

¨

˚

˚

˝

G1

G2

G3

G4

˛

‹

‹

‚

„ N
´

0,Σh

¯

(2.6)

with Σh “

„

Cov
`

Gi, Gj
˘



i,j“1:4

given by the (symmetric) matrix

Σh “ h

»

—

—

—

–

σ2
S ` hp

σ2
f

3 h`
σSσfρSf

2 q σSρSf `
σf
2 h ´h

`

σSσdρSd
2 `

σfσdρdf
3 h

˘

σSρSd `
σfρdf

2 h
ˆ 1 ´

σdρdf
2 h ρdf

ˆ ˆ
σ2
d
3 h2 ´

σd
2 h

ˆ ˆ ˆ 1

fi

ffi

ffi

ffi

fl

.

(2.7)

It follows from Equation (2.5) that the Markov chain pXtk ,W
f
tk
, Ytk ,W

d
tk
qk“0,...,n is homogeneous

with transition reading on Borel test-functions f : R4 Ñ R,

Pfpx, u, y, vq “ E
“

fpx` σfhu`G
1, u`G2, y ´ σdhv `G

3, v `G4q
‰

. (2.8)

Then, it is classical background that using the pFtkqk-Markov property of pXk,W
f
k , Yk,W

d
k q,

the BDPP (2.2) can be written as follows,
$

&

%

Vn “ hnpXn, Ynq,

Vk “ max
´

hkpXk, Ykq,E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

¯

, 0 ď k ď n´ 1.
(2.9)

and Vk “ vkpXk,W
f
k , Yk,W

d
k q for some Borel functions vk : R4 Ñ R satisfying @x,wf , y, wd P R,

$

&

%

vnpx,w
f , y, wdq “ hnpx, yq,

vkpx,w
f , y, wdq “ max

´

hkpx, yq, Pvk`1px,w
f , y, wdq

¯

, 0 ď k ď n´ 1.
(2.10)
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Payoff regularity. First, we look at the regularity of the payoff. The next proposition will
then allow us to study the regularity of the value function through the propagation of the local
Lipschitz property by the transition of the Markov process.

Proposition 2.1. If ψtk , k P t0, . . . , nu, are Lipschitz continuous with Lipschitz coefficients
rψtksLip with compactly supported (right) derivatives (such as the payoff defined in (2.1)) then
hkpx, yq given by (2.3) is locally Lipschitz continuous, there exist real constants Cψk ą Aψk ą 0
only depending on ψtk and on its right derivative ψ1tk such that

@x, x1, y, y1 P R, |hkpx, yq ´ hkpx
1, y1q| ď e|y|_|y

1|
`

Aψk |x´ x
1| ` Cψk |y ´ y

1|
˘

.

Proof. Let gk be defined by

gkpx, yq “ ψtk

ˆ

S0
ϕf ptkq

ϕdptkq
e´σ

2
Stk{2`x`y

˙

.

As ψ1tk has a compact support, then it exists c P R such that

|pψtkpe
xqq1| “ | ex ψ1tkpe

xq| ď }ψ1tk}8 sup
xPsuppψ1tk

ex ď }ψ1tk}8 ec .

Hence

|gkpx, yq ´ gkpx
1, y1q| ď

Aψk
ϕdptkq

`

|x´ x1| ` |y ´ y1|
˘

with Aψk “ rψtksLipS0ϕf ptkq e´σ
2
Stk{2 }ψ1tk}8 ec. Then for every x, x1, y, y1 P R, we have

|hkpx, yq ´ hkpx
1, y1q| “ ϕdptkq

ˇ

ˇ e´y gkpx, yq ´ e´y
1

gkpx
1, y1q

ˇ

ˇ

ď ϕdptkq
´

ˇ

ˇ e´y gkpx, yq ´ e´y
1

gkpx, yq
ˇ

ˇ`
ˇ

ˇ e´y
1

gkpx, yq ´ e´y
1

gkpx
1, y1q

ˇ

ˇ

¯

ď ϕdptkq
´

ˇ

ˇ e´y ´ e´y
1 ˇ
ˇ ¨ }ψtk}8 ` e´y

1 ˇ
ˇgkpx, yq ´ gkpx

1, y1q
ˇ

ˇ

¯

ď e|y|_|y
1|
´

ϕdptkq}ψtk}8 |y ´ y
1| `Aψk

`

|x´ x1| ` |y ´ y1|
˘

¯

.

The result follows with Cψk “ Aψk ` ϕdptkq}ψtk}8 .

The next Lemma shows that the transition of the Markov process propagates and controls
the local Lipschitz continuity of a function f . This result will be helpful to estimate the error
induced by the numerical approximation (2.10).

Lemma 2.2. Let P denote the Markov transition operator defined by Pfpx, u, y, vq “ E
“

fpx`
σfhu`G

1, u`G2, y ´ σdhv `G
3, v `G4q

‰

with G “ pG`q1ď`ď4 „ N p0,Σhq, Σh given by(2.7).
If the function f satisfies the following local Lipschitz property,

|fpx, u, y, vq ´ fpx1, u1, y1, v1q| ď
`

A|x´ x1| `B|u´ u1| ` C|y ´ y1| `D|v ´ v1|
˘

ˆ e|y|_|y
1|`b|v|_|v1|

then

|Pfpx, u, y, vq ´ Pfpx1, u1, y1, v1q| ď
`

A|x´ x1| ` pB `Aσfhq|u´ u
1|

` C|y ´ y1| ` pD ` Cσdhq|v ´ v
1|
˘

ˆ κ̄pbq e|y|_|y
1|`pb`σdhq|v|_|v

1|

(2.11)

with κ̄pbq “ E
“

expp|G3| ` b|G4|q
‰

ă `8.
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Proof. From Jensen’s inequality and our assumption on f

|Pfpx, u,y, vq ´ Pfpx1, u1, y1, v1q|

ď E
”

ˇ

ˇfpx` σfhu`G
1, u`G2, y ´ σdhv `G

3, v `G4q

´ fpx1 ` σfhu
1 `G1, u1 `G2, y1 ´ σdhv

1 `G3, v1 `G4q
ˇ

ˇ

ı

ď
`

A|x´ x1| ` pB `Aσfhq|u´ u
1| ` C|y ´ y1| ` pD ` Cσdhq|v ´ v

1|
˘

ˆ e|y|_|y
1|`pb`σdhq|v|_|v

1|E
“

e|G
3|`b|G4|

‰

.

Value function regularity. If the functions pψtkq0ďkďn are defined by Equation (2.1), then
the value function preserves a local Lipschitz property at each time tk. More precisely we have
the following Lemma.

Lemma 2.3. If the functions ψtk , k P t0, . . . , nu, are Lipschitz continuous with Lipschitz co-
efficient rψtksLip with a compactly supported (right) derivative, then for each k P t0, . . . , nu, vk
defined by (2.10) is locally Lipschitz continuous, and there exist Āk, B̄k, C̄k, D̄k positive con-
stants (with closed forms given by (2.14) and (2.15) below) and bk “ σdhpn ´ kq, k “ 0, . . . , n
such that, for every x, x1, u, u1, y, y1, v, v1 P R, both

|vkpx, u, y, vq ´ vkpx
1, u1, y1, v1q| (2.12)

ď
`

Āk|x´ x
1| ` B̄k|u´ u

1| ` C̄k|y ´ y
1| ` D̄k|v ´ v

1|
˘

e|y|_|y
1|`bk|v|_|v

1|,

and |Pvk`1px, u, y, vq ´ Pvk`1px
1, u1, y1, v1q| (2.13)

ď
`

Āk|x´ x
1| ` B̄k|u´ u

1| ` C̄k|y ´ y
1| ` D̄k|v ´ v

1|
˘

e|y|_|y
1|`bk|v|_|v

1| .

Proof. For every x, x1, u, u1, y, y1, v, v1 P R,

|vnpx, u, y, vq ´ vnpx
1, u1, y1, v1q| ď

`

Ān|x´ x
1| ` B̄n|u´ u

1| ` C̄n|y ´ y
1| ` D̄n|v ´ v

1|
˘

ˆ e|y|_|y
1|`bn|v|_|v1|

where
Ān “ Aψn , B̄n “ 0, C̄n “ Cψn , D̄n “ 0, b̄n “ 0

where Aψn and Cψn come from Proposition 2.1. Using now Lemma 2.2 recursively and the ele-
mentary inequality maxpa, b` cq ď maxpa, bq ` c (as x ÞÑ maxpa, xq is 1-Lipschitz), we have

|vkpx, u, y, vq ´ vkpx
1, u1, y1, v1q|

ď max
`

|hkpx, yq ´ hkpx
1, y1q|, |Pvk`1px, u, y, vq ´ Pvk`1px

1, u1, y1, v1q|
˘

,

so that

|vkpx, u, y, vq ´ vkpx
1, u1, y1, v1q|

ď max

ˆ

e|y|_|y
1|
`

Aψk |x´ x
1| ` Cψk |y ´ y

1|
˘

,

`

Āk`1|x´ x
1| ` pB̄k`1 ` Āk`1σfhq|u´ u

1| ` C̄k`1|y ´ y
1|

` pD̄k`1 ` C̄k`1σdhq|v ´ v
1|
˘

κ̄pbk`1q e|y|_|y
1|`pbk`1`σdhq|v|_|v

1|

˙

.
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One derives by a backward induction that bk “ σdhpn´kq, and denoting π̄k “
śk
j“0 κ̄pbjq (with

κ̄pbq “ E
“

expp|G3| ` b|G4|q
‰

)

Āk “ max
kď`ďn

ˆ

Aψ`
π̄`
π̄k

˙

, B̄k “ σf h
1

π̄k

n
ÿ

`“k`1

π̄`Ā`, (2.14)

and

C̄k “ max
kď`ďn

ˆ

Cψ`
π̄`
π̄k

˙

, D̄k “ σf h
1

π̄k

n
ÿ

`“k`1

π̄`C̄`. (2.15)

Finally, one checks that (2.13) holds as well in view of the respective values appearing inside
the max, thanks to Lemma 2.2.

3 Bermudan pricing using Optimal Quantization

In this section, we propose two numerical solutions based on Product Optimal Quantization for
the pricing of Bermudan options on the FX rate St. First, we remind briefly what an opti-
mal quantizer is and what we mean by a product quantization tree. Second, we present a first
numerical solution, based on quantization of the Markovian 4-tuple pX,W f , Y,W dq, to solve
the numerical problem (2.9) and detail the L2-error induced by this approximation. However,
remember that we are looking for a method that makes possible to compute xVA’s risk mea-
sures in a reasonable time but this solution can be too time consuming in practice due to the
dimensionality of the quantized processes. That is why we present a second numerical solution
which reduces the dimensionality of the problem by considering an approximate problem, based
on quantization of the non-Markovian couple pX,Y q, introducing a systematic error induced by
the non-markovianity and we study the L2-error produced by this approximation.

3.1 Theoretical background (one-dimensional case).

The aim of Optimal Quantization is to produce optimal spatial discretization of random vector
(or its distribution) at a given level N i.e. to determine a finite ΓN , a set with cardinality at
most N , which minimises the Lp-approximation error among all such sets Γ. We consider for
our needs only the one-dimensional case. Let Z P LpR, p P r1,`8q be a random variable with
distribution PZ defined on a probability space pΩ,A,Pq.

Let Γ “ tz1, . . . , zNu Ă R be a subset of size N , called N -quantizer. We may assume up to
renumbering that z1 ă z2 ă ¨ ¨ ¨ ă zN . Composing Z with any Borel nearest neighbour projection
ProjΓ : RÑ tz1, . . . , zNu, i.e.

pZΓ “ ProjΓpZq

achives the best pointwise approximation of Z by a Γ-valued random variable. In particular

ProjΓ “
N
ÿ

i“1

zi 1ZPCipΓq

where tCi
`

Γ
˘

: 1 ď i ď Nu is a partition induced of Rd satisfying

Ci
`

Γ
˘

Ă

!

ξ P R, |ξ ´ zi| ď min
j‰i

|ξ ´ zj |
)

.

is a nearest neighbour projection. Then the Lp-mean quantization error induced by the quantizer
pZΓ only depends on Γ and PZ is defined by

12



}distpZ,Γq}p “ }Z ´ pZΓ}p “

ˆ

E
”

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
p
ı

˙1{p

. (3.1)

It is convenient to define the Lp-distortion function at level N as the pth power of the Lp-mean
quantization error on pRqN :

Qp,N
`

z1, . . . , zN
˘

:“ E
”

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
p
ı

“ }Z ´ pZtz1,...,zN u}p
p
.

It has been shown that this function attains a minimum at an N -tuple zpNq “ pz1, . . . , zN q
producing an Lp-optimal quantizer ΓN “ tzi, i “ 1, ¨ ¨ ¨ , Nu (see e.g. [Pag18] and the references
therein for details). For our purpose, we need to compute such optimal grids for the normal
distribution when p “ 2: this has been done and made available on the website

www.quantize.math-fi.com
A really interesting and useful property concerning quadratic optimal quantizers is the sta-

tionarity property.

Proposition 3.1. (Stationarity) Assume that the support of PX has at least N elements. Any
L2-optimal N -quantizer ΓN P pRqN is stationary in the following sense: for every Voronoï
quantization pXN of X,

E
“

X | pXN
‰

“ pXN .

The rate of decay of the minimal Lp-mean quantization error is a natural question and useful
for numerical results (references can be found in [Pag18]) but in our case we need more: the
Ls-convergence rate of the Ls-quantization error induced by a sequence of Lp-optimal quantizers
p ă s. This problem, known as the distortion mismatch, was first addressed in [GLP08] and then
generalized in [PS18, Theorem 4.3]. The following theorem is a simplified version of the original
one in [PS18].

Theorem 3.2. [Lr-Ls-distortion mismatch] Let Z : pΩ,A,Pq Ñ R be a random variable and
let r P p0,`8q. Assume that the distribution PZ of Z has a non-zero absolutely continuous
component with respect to the Lebesgue measure. Let r ě 1 and let pΓN qNě1 be a sequence of
Lr-optimal N -quantizers. Assume that Z P

č

pě1

LppPq. Then

@ sP p0, r ` 1q, lim sup
N

N}Z ´ pZN}s ă `8.

Product Quantization. Now, let Z “ pZ`q`“1:d be an Rd-valued random vector with dis-
tribution PZ defined on a probability space pΩ,A,Pq. There are two approaches if one wishes
to scale to higher dimensions. Either one applies the above framework directly to the random
vector Z and build an optimal quantizer of Z, or one may consider separately each component
Z` independently, build a one-dimensional optimal quantization pZ`, of size N `, with quantizer
ΓN

`

` “
 

z`i` , i` P t1, ¨ ¨ ¨ , N
`u
(

and then build the product quantizer ΓN “
śd
`“1 ΓN

`

` of size
N “ N1 ˆ ¨ ¨ ¨ ˆNd defined by

ΓN “
 

pz1
i1 , ¨ ¨ ¨ , z

`
i`
, ¨ ¨ ¨ , zdidq, i` P t1, ¨ ¨ ¨ , N`u, ` P t1, ¨ ¨ ¨ , du

(

.

In our case we chose the second approach. Indeed, it is much more flexible when dealing with
normal distribution, like in our case. We do not need to solve the d-dimensional minimization
problem at each time step. We only need to load precomputed optimal quantizer of standard
normal distribution N p0, 1q and then take advantage of the stability of optimal quantization by
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rescaling in one dimension in the sense that if ΓN “ tzi, 1 ď i ď Nu is optimal at level N for
N p0, 1q then µ` σΓN (with obvious notations) is optimal for N pµ, σ2q.

Even though there exist fast methods for building optimal quantizers in two-dimension based
on deterministic methods like in the one-dimensional case, when dealing with optimal quantiza-
tion of bivariate Gaussian vector, we may face numerical instability when the covariance matrix
is ill-conditioned: so is the case if the variance of one coordinate is relatively high compared to
the second one (which is our case in this paper). This a major drawback as we are looking for a
fast numerical solution able to produce prices in a few seconds and this is possible when using
product optimal quantization.

Quantization Tree. Now, instead of considering a random variable Z, let pZtqtPr0,T s be a
stochastic process following a Stochastic Differential Equation (SDE)

Zt “ Z0 `

ż t

0
bspZsqds`

ż t

0
σps, ZsqdWs

with Z0 “ z0 P R
d, W a standard Brownian motion living on a probability space pΩ,A,Pq and

b and σ satisfy the standard assumptions in order to ensure the existence of a strong solution of
the SDE.

What we call Quantization Tree is defined, for chosen time steps tk “ Tk{n, k “ 0, ¨ ¨ ¨ , n, by
quantizers pZk of Zk (Product Quantizers in our case) at dates tk and the transition probabilities
between date tk and date tk`1. Although p pZkqk is no longer a Markov process we will consider
the transition probabilities πkij “ Pp pZk`1 “ zk`1

j | pZk “ zki q. We can apply this methodology
because, with the model we consider, we know all the marginal laws of our processes at each
date of interest.

In the next subsection, we present the approach based on the quantization tree previously
defined that allows us to approximate the price of Bermudan options where the risk factors are
driven by the 3-factor model (1.1).

3.2 Quantization tree approximation: Markov case

Our first approach in order to spatially discretize (2.9) is to quantize pXk,W
f
k , Yk,W

d
k q at each

instant tk by product quantization i.e. using quadratic optimal quantizations pXk,xW
f
k ,

pYk,xW
d
k

of their marginals Xk, W
f
k , Yk and W d

k of size NX
k , NW f

k , NY
k and NW d

k respectively. Then
p pXk,xW

f
k ,

pYk,xW
d
k qk“0,...,n is no longer a Markov process. We "force" in some sense the (lost)

Markov property in the Backward Dynamic Programming Principle by introducing a Quantized
Backward Dynamic Programming Principle (QBDPP) as follows

$

&

%

pV (m)
n “ hnp pXn, pYnq,

pV
(m)
k “ max

´

hkp pXk, pYkq,E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰

¯

, 0 ď k ď n´ 1.
(3.2)

Moreover, let pxki1qi1“1:NX
k
, puki2qi2“1:NWf

k

, pyki3qi3“1:NY
k

and pvki4qi4“1:NWd
k

be the associated cen-

troids of pXk, xW
f
k , pYk and xW d

k respectively. Using the discrete property of the optimal quantizers,
the conditional expectation appearing in (3.2) can be rewritten as

E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q “

`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘‰

“ E
“

pv
(m)
k`1p

pXk`1,xW
f
k`1,

pYk`1,xW
d
k`1q | p

pXk,xW
f
k ,

pYk,xW
d
k q “

`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘‰

“
ÿ

j1,j2,j3,j4

π
(m),k
i,j pv

(m)
k`1

`

xk`1
j1

, uk`1
j2

, yk`1
j3

, vk`1
j4

˘

14



where π(m),k
i,j , with i “ pi1, i2, i3, i4q and j “ pj1, j2, j3, j4q, is the conditional probability defined

by

π
(m),k
i,j “ P

´

`

pXk`1,xW
f
k`1,

pYk`1,xW
d
k`1

˘

“
`

xk`1
j1

, uk`1
j2

, yk`1
j3

, vk`1
j4

˘

|
`

pXk,xW
f
k ,

pYk,xW
d
k

˘

“
`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘

¯

.
(3.3)

This corresponds to marginal quantization tree as introduced in [BPP05] (and named in [PPP04]).
We are interested in the error induced by the above algorithm and more precisely its L2-error.
Standard error bounds from [BPP05] need to be adapted since the payoff functions are not
Lipschitz.

Theorem 3.3. Let the Markov transition Pfpx, u, y, vq defined in (2.8) be locally Lipschitz in the
sense of Lemma 2.2. Assume that all the payoff functions pψtkq0ďkďn are Lipschitz continuous
with compactly supported (right) derivative. Then the L2-error between pV (m) defined by (3.2) and
V defined by (2.9) using the quantization approximation p pXk,xW

f
k ,

pYk,xW
d
k q is upper-bounded by

›

›Vk ´ pV
(m)
k

›

›

2

2
ď

n
ÿ

`“k

CX`
›

›X` ´ pX`

›

›

2

2p
` CY`

›

›Y` ´ pY`
›

›

2

2p
` CW d

`

›

›W d
` ´

xW d
`

›

›

2

2p
` C

W f
`

›

›W f
` ´

xW f
`

›

›

2

2p
,

(3.4)
where 1 ă p ă 3{2 and q ě 1 such that 1

p `
1
q “ 1 and

CX` “ 2Kq
` p0qpA

ψ
` q

2 ` 4Kq
` pb`qĀ

2
` , CW d

`
“ 4B̄2

`K
q
` pb`q,

CY` “ 2Kq
` p0qpC

ψ
` q

2 ` 4Kq
` pb`qC̄

2
` , C

W f
`
“ 4D̄2

`K
q
` pb`q

(3.5)

with the function Kq
` defined by

@b ą 0, Kq
` pbq “

›

› e|Y`|_|
pY`|`b|W

d
` |_|

xW d
` |
›

›

2

2q
. (3.6)

As a consequence if sN “ minkNk, we have

lim
sNÑ`8

›

›Vk ´ pV
(m)
k

›

›

2

2
“ 0. (3.7)

Remark. From the definition of the processes Xk, W
f
k , Yk and W d

k , all are Gaussian random
variables, hence the functions Kq

k , q ě 1, k P t0, . . . , nu, introduced in (3.6) are well defined.
Indeed, let Z „ N p0, σZ q be a Gaussian random variable with variance σ2

Z
and pZ an optimal

quadratic quantizer of Z with cardinality N then @λ P R`

@q ě 1,
›

› eλ|Z|_|
pZ|
›

›

2q
“

ˆ

E
“

e2qλ|Z|_| pZ|
‰

˙
1
2q

ď

ˆ

2E
“

e2qλ|Z|
‰

˙
1
2q

ď 2
1
2q eq

2λ2σ2
Z

since, by the stationarity property of pZ and the convexity of e2qλ¨, E
“

e2qλ| pZ|
‰

ď E
“

e2qλ|Z|
‰

.

Proof. The error between the Snell envelope and its approximation is given by

|Vk ´ pV
(m)
k | ď max

´

ˇ

ˇhkpXk, Ykq ´ hkp pXk, pYkq
ˇ

ˇ,

ˇ

ˇE
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰ˇ

ˇ

¯
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thus, using the local Lipschitz property of hk established in Proposition 2.1 and Hölder’s inequal-
ity with p, q ě 1 such that 1

p `
1
q “ 1, the L2-error is upper-bounded by

›

›Vk ´ pV
(m)
k

›

›

2

2
ď

›

›hkpXk, Ykq ´ hkp pXk, pYkq
›

›

2

2

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰
›

›

2

2

ď 2
›

› e|Yk|_|
pYk|

›

›

2

2q

´

pCψk q
2
›

›Yk ´ pYk
›

›

2

2p
` pAψk q

2
›

›Xk ´ pXk

›

›

2

2p

¯

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2
.

(3.8)
Looking at the last term, we have

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰

“ E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

` E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰

.

Now, we inspect the L2-error of each term on the right-hand side of the equality.

• For the first term, we notice that

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

“ Pvk`1pXk,W
f
k , Yk,W

d
k q ´ Pvk`1p pXk,xW

f
k ,

pYk,xW
d
k q

then by Lemma 2.3 we obtain
ˇ

ˇE
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰ˇ

ˇ

ď
`

Āk|Xk ´ pXk| ` B̄k|W
f
k ´

xW f
k | ` C̄k|Yk ´

pYk| ` D̄k|W
d
k ´

xW d
k |
˘

e|Yk|_|
pYk|`bk|W

d
k |_|

xW d
k | .

Hence, using Hölder’s inequality with p, q ě 1 such that 1
p `

1
q “ 1,

›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2

ď 4
´

Ā2
k

›

›Xk ´ pXk

›

›

2

2p
` B̄2

k

›

›W f
k ´

xW f
k

›

›

2

2p
` C̄2

k

›

›Yk ´ pYk
›

›

2

2p
` D̄2

k

›

›W d
k ´

xW d
k

›

›

2

2p

¯

ˆ
›

› e|Yk|_|
pYk|`bk|W

d
k |_|

xW d
k |
›

›

2

2q
.

(3.9)

• The last one is useful for the induction, indeed
›

›E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

´ E
“

pV
(m)
k`1 | p

pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2
ď

›

›Vk`1 ´ pV
(m)
k`1

›

›

2

2
. (3.10)

Combining (3.8), (3.9) and (3.10) and using the function Kq
k defined in (3.6) we get

›

›Vk ´ pV
(m)
k

›

›

2

2
ď 2Kq

kp0q
´

pCψk q
2
›

›Yk ´ pYk
›

›

2

2p
` pAψk q

2
›

›Xk ´ pXk

›

›

2

2p

¯

` 4Kq
kpbkq

´

Ā2
k

›

›Xk ´ pXk

›

›

2

2p
` B̄2

k

›

›W f
k ´

xW f
k

›

›

2

2p

` C̄2
k

›

›Yk ´ pYk
›

›

2

2p
` D̄2

k

›

›W d
k ´

xW d
k

›

›

2

2p

¯

`
›

›Vk`1 ´ pV
(m)
k`1

›

›

2

2
.

By induction we deduce (3.4) with constants defined in (3.5).
Finally, using the Lr-Ls mismatch Theorem 3.2 applied with r “ 2 and s “ 2p ą r for

the four L2p-quantization error terms related to X, Y , W f and W d yields, if 1 ă p ă 3{2, we
obtain (3.7).
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To conclude this section, although considering product optimal quantizer in four dimensions
for pXk,W

f
k , Yk,W

d
k q seems to be natural, the computational cost associated to the resulting

QBDPP is too high, of order Opn ˆ pmaxNkq
2q. Moreover the computation of the transition

probabilities needed for the evaluation of the terms E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

is challenging.
These transition probabilities cannot be computed using deterministic numerical integration
methods and we have to use Monte Carlo estimators. Even though it is feasible, it is a drawback
for the method since it increases drastically the computation time for calibrating the quantization
tree. In the next section we provide a solution to these problems which consists in reducing the
dimension of the problem at the price of adding a systematic error, which turns out to be quite
small in practice.

3.3 Quantization tree approximation: Non Markov case

In this part, we want to reduce the dimension of the problem in order to scale down the numerical
complexity of the pricer. For that we discard the processes W d and W f in the quantization tree
and only keep X and Y . Doing so, we lose the Markovian property of our original model but we
drastically reduce the numerical complexity of the problem. Thence, (2.9) is still approximated
by forcing the Markov property in the Dynamic programming this with respect to p pXk, pYkq:

$

&

%

pV (nm)
n “ hnp pXn, pYnq,

pV
(nm)
k “ max

´

hkp pXk, pYkq,E
“

pV
(nm)
k`1 | p pXk, pYkq

‰

¯

, 0 ď k ď n´ 1
(3.11)

where for every k “ 0, . . . , n, pXk and pYk are quadratic optimal quantizations of Xk and Yk of
size NX

k and NY
k respectively. Let Nk “ NX

k ˆ NY
k denotes the size of the product grid. Let

pxki1qi1“1:NX
k

and pyki3qi3“1:NY
k

be the associated centroids of pXk and pYk respectively. Again, as
in the Markovian case, using the discrete property of the optimal quantizers, the conditional
expectation appearing in (3.11) can be rewritten as

E
“

pV
(nm)
k`1 | p pXk, pYkq “

`

xki1 , y
k
i2

˘‰

“ E
“

pv
(nm)
k`1 p

pXk`1, pYk`1q | p pXk, pYkq “
`

xki1 , y
k
i2

˘‰

“
ÿ

j1,j2

π
(nm),k
i,j pvk`1

`

xk`1
j1

, yk`1
j2

˘

where π(nm),k
i,j , with i “ pi1, i2q and j “ pj1, j2q, is the conditional probability defined by

π
(nm),k
i,j “ P

´

`

pXk`1, pYk`1

˘

“
`

xk`1
j1

, yk`1
j2

˘

|
`

pXk, pYk
˘

“
`

xki1 , y
k
i2

˘

¯

. (3.12)

Theorem 3.4. Let the Markov transition Pfpx, u, y, vq be defined by (2.8) be locally Lipschitz in
the sense of Lemma 2.2. Assume that all the payoff functions pψtkq0ďkďn are Lipschitz continuous
with compactly supported (right) derivative. Then the L2-error between pV (nm) defined by (3.11)
and V defined by (2.9) using the quantization approximation p pXk, pYkq is upper-bounded by

›

›Vk ´ pV
(nm)
k

›

›

2

2
ď

n´1
ÿ

`“k

´

C
W f
`

›

›W f
` ´ ErW

f
` | pX`, Y`qs

›

›

2

2p
` CW d

`

›

›W d
` ´ ErW

d
` | pX`, Y`qs

›

›

2

2p

` CX`
›

›X` ´ pX`

›

›

2

2p
` CY`

›

›Y` ´ pY`
›

›

2

2p

¯

(3.13)

where 1 ă p ă 3{2 and q ě 1 such that 1
p `

1
q “ 1, moreover

CX` “ 2Kq
kp0q

`

pAψk q
2 ` Ā2

k

˘

, C
W f
`
“ 2 rKq

kpbkqB̄
2
k,

CY` “ 2Kq
kp0q

`

pCψk q
2 ` C̄2

k

˘

, CW d
`
“ 2 rKq

kpbkqD̄
2
k.
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with Kq
kp0q “

›

›e|Yk|_|
pYk|
›

›

2

2q
and rKq

kpbq “
›

›e|Yk|`b|W
d
k |_|ErW

d
k |pXk,Ykqs|

›

›

2

2q
. Taking the limit in sN “

minkNk, the size of the quadratic optimal quantizers, we have

lim sup
sNÑ`8

›

›Vk ´ pV
(nm)
k

›

›

2

2
ď E(nm)

n pkq (3.14)

with E(nm)
n pkq “

řn´1
`“k CW f

`

›

›W f
` ´ ErW

f
` | pX`, Y`qs

›

›

2

2p
` CW d

`

›

›W d
` ´ ErW

d
` | pX`, Y`qs

›

›

2

2p
.

Proof. We apply the same methodology as in the proof for the Markov case. The error between
the Snell envelope and its approximation is given by

|Vk´pV
(nm)
k | ď max

´

ˇ

ˇhkpXk, Ykq´hkp pXk, pYkq
ˇ

ˇ,
ˇ

ˇE
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´E
“

pV
(nm)
k`1 | p pXk, pYkq

‰ˇ

ˇ

¯

thus, using Proposition 2.1 and Hölder’s inequality with p, q ě 1 such that 1
p`

1
q “ 1, the L2-error

is given by
›

›Vk ´ pVk
›

›

2

2
ď

›

›hkpXk, Ykq ´ hkp pXk, pYkq
›

›

2

2

`
›

›E
“

V
(nm)
k`1 | pXk,W

f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk, pYkq
‰
›

›

2

2

ď 2
›

› e|Yk|_|
pYk|

›

›

2

2q

´

pCψk q
2
›

›Yk ´ pYk
›

›

2

2p
` pAψk q

2
›

›Xk ´ pXk

›

›

2

2p

¯

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(nm)
k`1 | p pXk, pYkq

‰›

›

2

2
.

(3.15)

The last term in Equation (3.15) can be decomposed as follows

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(nm)
k`1 | p pXk, pYkq

‰

(3.16)

“ E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk, pYkq
‰

` E
“

Vk`1 | p pXk, pYkq
‰

´ E
“

pV
(nm)
k`1 | p pXk, pYkq

‰

.

As pXk, pYk is a function of pXk, Ykq and σpXk, Ykq Ă σpXk,W
f
k , Yk,W

d
k q we observe that

E
“

pV
(nm)
k`1 | p pXk, pYkq

‰

“ E
“

E
“

pV
(nm)
k`1 | pXk,W

f
k , Yk,W

d
k q
‰

| p pXk, pYkq
‰

.

Note that the two terms in the decomposition (3.16) are orthogonal in L2pPq by the definition
of conditional expectation as an orthogonal projection. Consequently

›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pV
(nm)
k`1 | p pXk, pYkq

‰
›

›

2

2

“
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk, pYkq
‰›

›

2

2

`
›

›E
“

Vk`1 | p pXk, pYkq
‰

´ E
“

pV
(nm)
k`1 | p pXk, pYkq

‰›

›

2

2

ď
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk, pYkq
‰›

›

2

2

`
›

›Vk`1 ´ pV
(nm)
k`1

›

›

2

2
.

Now it remains to control the term representative of the Markovian default, namely

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk, pYkq
‰

(3.17)

“E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰

(3.18)

` E
“

Vk`1 | pXk, Ykq
‰

´ E
“

Vk`1 | p pXk, pYkq
‰

. (3.19)

Once again, both terms can be upper-bounded.
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• As for the first term in the right hand side of (3.18), notice that using that

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰

“ Pvk`1pXk,W
f
k , Yk,W

d
k q ´ E

“

Pvk`1pXk,W
f
k , Yk,W

d
k q | pXk, Ykq

‰

where we used that σpXk, Ykq Ă σpXk,W
f
k , Yk,W

d
k q. Then, using the fact that the conditional

expectation is the best quadratic approximation, we have
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰›

›

2

2

ď
›

›Pvk`1pXk,W
f
k , Yk,W

d
k q ´ Pvk`1

`

Xk,ErW
f
k | pXk, Ykqs, Yk,ErW

d
k | pXk, Ykqs

˘›

›

2

2

ď

›

›

›

´

B̄k|W
f
k ´ ErW

f
k | pXk, Ykqs| ` D̄k|W

d
k ´ ErW

d
k | pXk, Ykqs|

¯

ˆ e|Yk|`bk|W
d
k |_|ErW

d
k |pXk,Ykqs|

›

›

›

2

2

where B̄k, D̄k and bk “ σdhpn´ kq are given in Lemma 2.3.

Hölder’s inequality with p, q ě 1 such that 1
p `

1
q “ 1 yields

›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰›

›

2

2

ď 2 rKq
kpbkq

´

B̄2
k

›

›W f
k ´ ErW

f
k | pXk, Ykqs

›

›

2

2p
` D̄2

k

›

›W d
k ´ E

“

W d
k | pXk, Ykq

‰
›

›

2

2p

¯

with the notation rKq
kpbq “

›

›e|Yk|`b|W
d
k |_|ErW

d
k |pXk,Ykqs|

›

›

2

2q
.

• For the second term in the right hand side of (3.17), we define

rvkpx, yq “ E
“

Vk`1 | pXk, Ykq “ px, yq
‰

“ E
“

Pvk`1px,W
f
k , y,W

d
k q
‰

.

On the other hand, note again that p pXk, pYkq being a function of pXk, Ykq, the tower property of
conditional expectation yieds E

“

Vk`1 | p pXk, pYkq
‰

“ E
“

E
“

Vk`1 | pXk, Ykq
‰

| p pXk, pYkq
‰

combining
these two identities with the property of best quadratic approximation of conditional expectation
yields

›

›E
“

Vk`1 | pXk, Ykq
‰

´ E
“

Vk`1 | p pXk, pYkq
‰›

›

2

2
ď

›

›E
“

Vk`1 | pXk, Ykq
‰

´ rvkp pXk, pYkq
›

›

2

2

“
›

›

rvkpXk, Ykq ´ rvkp pXk, pYkq
›

›

2

2
.

Now it follows from Lemma 2.13 that rvk is locally-Lipschitz continuous in px, yq namely

›

›

rvkpXk, Ykq ´ rvkp pXk, pYkq
›

›

2

2
ď

›

›

›

´

Āk|Xk ´ pXk| ` C̄k|Yk ´ pYk|
¯

e|Yk|_|
pYk|
›

›

›

2

2

ď 2Kq
kp0q

´

Ā2
k

›

›Xk ´ pXk

›

›

2

2p
` C̄2

k

›

›Yk ´ pYk
›

›

2

2p

¯

.

We then obtain

›

›Vk ´ pV
(nm)
k

›

›

2

2
ď 2Kq

kp0q
´

pAψk q
2
›

›Xk ´ pXk

›

›

2

2p
` pCψk q

2
›

›Yk ´ pYk
›

›

2

2p

¯

` 2 rKq
kpbkq

´

B̄2
k

›

›W f
k ´ ErW

f
k | pXk, Ykqs

›

›

2

2p
` D̄2

k

›

›W d
k ´ E

“

W d
k | pXk, Ykq

‰
›

›

2

2p

¯

` 2Kq
kp0q

´

Ā2
k

›

›Xk ´ pXk

›

›

2

2p
` C̄2

k

›

›Yk ´ pYk
›

›

2

2p

¯

`
›

›Vk`1 ´ pV
(nm)
k`1

›

›

2

2
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and we deduce (3.13) by induction.
Finally, applying the Lr-Ls mismatch theorem to the Gaussian distributions of pXk, Ykq with

r “ 2 and s “ 2p ą 1 with the quadratic optimal quantizations pXk and pYk and 1 ă p ă 3{2,
yields

lim sup
N̄Ñ`8

›

›Vk ´ pV
(nm)
k

›

›

2

2
ď

n´1
ÿ

`“k

C
W f
`

›

›W f
` ´ ErW

f
` | pX`, Y`qs

›

›

2

2p
` CW d

`

›

›W d
` ´ ErW

d
` | pX`, Y`qs

›

›

2

2p
.

Practitioner’s corner. Market implied values of σf , σd and σS used for the numerical com-
putations are usually of order

σf « 0.005, σd « 0.005, σS « 0.5.

In practice, the value of the systematic error E(nm)
n pkq remaining in (3.14) is highly dependant

of the value of the volatilities σd and σf . Indeed, the constants C
W f
`
and CW d

`
are of order σ2

f

and σ2
d, respectively

C
W f
`
“ 2σ2

f h
2
rKq
kpbkq

´ 1

π̄k

n
ÿ

`“k`1

π̄`Ā`

¯2
, quadCW d

`
“ 2σ2

d h
2
rKq
kpbkq

´ 1

π̄k

n
ÿ

`“k`1

π̄`C̄`

¯2
,

where Āk and C̄k are given in (2.14) and (2.15). The following numerical experiments outline
this behaviour.

4 Numerical experiments

In this section, we illustrate the theoretical results found in Section 3 regarding the pricing of
Bermudan options in the 3-factor model described in Section 1. First, we detail both algorithms
and how to compute the quantities that appear in them (conditional expectation, conditional
probabilities, ...). Then, we test our two numerical solutions for the pricing of European options,
whose price is known in closed form. European options are Bermudan options with only one
date of exercise, hence when using the non-Markovian approximate we do not introduce the
systematic error shown in Theorem 3.4 but pricing these kind of options is a good benchmark in
order to test our methodologies. Finally, we evaluate Bermudan options and compare our two
solutions, the Markovian and the non-Markovian approximation.

We have to keep in mind that the computation times are crucial because these pricers are
only a small block in the complex computation of xVA’s. Indeed, they will be called hundreds
of thousands of times each time these risks measures are needed.

All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core i9 CPU. The computations of the transition probabilities and the computations of the
conditional expectations are parallelized on the CPU.

Remark. The computation times given below measure the time needed for loading the pre-
computed optimal grids from files, rescaling the optimal quantizers in order to get the right
variance, computing the conditional probabilities (the part that demands the most in term of
computing power) and finally computing the expectations for the pricing. One has to keep in
mind that the complexity is linear in function of n, the number of exercise dates. Indeed, if we
double the number of exercise dates, we double the number of conditional probability matrices
and expectations to compute.
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Characterization of the Quantization Tree. In what follows, we describe the choice of
parameters we made when building the quantization tree: the time discretisation and the size of
each grid at each time.

• The time discretisation is an easy choice because it is decided by the characteristics of the
financial product. Indeed, we take only one date (and today’s date) in the tree if we want
to evaluate European options and if we want to evaluate Bermudan options we take as
many discretisation dates (plus today’s date) in the tree as there are exercise dates in the
description of the product.

• Then, we have to decide the size of each grid at each date in the tree. In our case, we
consider grids of same size at each date hence Nk “ N, k “ 1 . . . , n and then we take
NX “ 10NY for both trees. This choice seems to be reasonable because the risk factor
Xk is prominent, due to the value of σS compare to σd. Now, in the Markovian case, we
take NX “ 4NWf and NY “ 4NWd , indeed the two Brownian Motions are important
only when we compute the conditional expectation but not when we want to evaluate the
payoffs, hence we want to give as much as possible of the budget N to NX and NY .

The algorithm: Markovian Case. Due to the dimension of the problem (4 in this case),
we cannot compute the probabilities defined in (3.3) using deterministic methods, hence one
has to simulate trajectories of the processes in order to evaluate them. We refer the reader to
[BPP05, BP03, PPP04] for details on the methodology.

A way to reduce the complexity of the problem is to approximate these probabilities by
rπ
(m),k
i,j , where the conditional part pE

(m)
k “

 `

pXk,xW
f
k ,

pYk,xW
d
k

˘

“
`
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˘(
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´
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˘
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˘

¯

.
(4.1)

The reason for replacing pE
(m)
k by Ek is explained in the next paragraph dealing with the Non-

Markovian case with lighter notations (see Equation (4.2) and (4.3)). Although, these probabil-
ities are easier to calculate, one still has to devise a Monte Carlo simulation in order to evaluate
them. This simplification will be useful later in the uncorrelated case.

Following these remarks, the QBDPP in the Markovian case (3.2) rewrites as
$

’

&

’

%

pvn
`

xni1 , u
n
i2 , y

n
i3 , v

n
i4

˘

“ hn
`

xni1 , y
n
i3

˘

,

pvk
`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘

“ max

ˆ

hk
`

xki1 , y
k
i3

˘

,
ÿ

j1,j2,j3,j4

rπ
(m),k
i,j pvk`1

`

xk`1
j1

, uk`1
j2

, yk`1
j3

, vk`1
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˘

˙

.

The algorithm: Non-Markovian case. The transition probabilities (3.12) can be computed
by numerical integration. Denoting CipΓkxq “ pxki´1{2, x

k
i`1{2q we have

π
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i,j “ P
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`
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¯
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k
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¯
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´

Xk P Ci1pΓ
k
xq, Yk P Ci2pΓ

k
yq

¯ .

(4.2)
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The vectors pXk`1, Yk`1, Xk, Ykq and pXk, Ykq are Gaussian vectors and their covariance matrices
are known. It is therefore possible to compute the probabilities in Equation (4.2) by numeri-
cal integrations (in dimension 4 for the numerator and in dimension 2 for the denominator).
These numerical integrations could be too time consuming, hence once again, we approximate
these probabilities by rπ

(nm),k
i,j , where the conditional part

 `

pXk, pYk
˘

“
`

xki1 , y
k
i2

˘(

is replaced by
 

pXk, Ykq “
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k
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˘(

, yielding
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´
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˘

¯

. (4.3)

From the definition of an optimal quantizer and Equation (2.4), this probability can be
rewritten as the probability that a correlated bivariate normal distribution lies in a rectangular
domain 2
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(4.5)
where
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ˆ

0
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2
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d
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k`1q and ρZ1,Z2 “ CorrpσfhW
f
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d
k `G

3
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Now, following the above footnote, if pU, V q is a two-dimensional correlated and standardised
normal distribution with correlation ρ and cumulative distribution function (CDF) given by
F ρU,V pu, vq “ PpU ď u, V ď vq, u, vP R, one has for pu1, v1q, pu2, v2q, u1 ď u2, v1 ď v2,

P
`

U P pu1, u2q, V P pv1, v2q
˘

“ F ρU,V pu2, v2q ´ F
ρ
U,V pu1, v2q ´ F

ρ
U,V pu2, v1q ` F

ρ
U,V pu1, v1q.

(4.6)
This remark applied to (4.5) with U “ Z1{σZ1 and V “ Z2{σZ2 will allow us to reduce

drastically the computation time induced by the evaluation of the conditional probabilities and
so, of the conditional expectations.

2The advantage of expressing (4.5) as the probability that a bivariate Gaussian vector lies in a rectangular
domain is that it can be rewritten as a linear combination of bivariate cumulative distribution functions. Indeed,
let pU, V q a two-dimensional correlated and standardized normal distribution with correlation ρ and cumulative
distribution function (CDF) given by F ρU,V pu, vq “ PpU ď u, V ď vq. Fast and efficient numerical implementation
of such function exists (for example, a C++ implementation of the upper right tail of a correlated bivariate normal
distribution can be found in John Burkardt’s website, see [Bur12], which is based on the work of [Don73] and
[Owe58].
We are interested in the computation of probabilities of the form

P
`

U P pu1, u2q, V P pv1, v2q
˘

. (4.4)

This probability is represented graphically as the integral of the two-dimensional density over the rectangular
domain in grey in Figure 2.
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Figure 2: Domain of integration for probabilities of correlated two-dimensional Gaussian random
vector.

Now, going back to our problem, the QBDPP in the non-Markovian case rewrites (3.11)
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In order to test numerically the two methods, we will evaluate PRDC European and Bermu-
dan options with maturities 2Y , 5Y , 10Y and 20Y . We describe below the market and products
parameters we consider. The volatilities of the domestic and the foreign interest rates are not
detailed below because we investigate the behaviour of the methods with respect to σd and σf .

P dp0, tq expp´rdtq rd 0.015
P f p0, tq expp´rf tq rf 0.01
S0 88.17 σS 0.5

Table 1: Market parameters. The so-called ‘zero correlation case’ means ρSd “ ρSf “ ρdf “ 0,
otherwise the correlations are fixed at ρSf “ ´0.0272, ρSd “ 0.1574, and ρdf “ 0.6558.

@ k P 1, . . . , n, Cdptkq 15% @ k P 1, . . . , n, Cf ptkq 18.9%
@ k P 1, . . . , n, Capptkq 5.55% @ k P 1, . . . , n, Floorptkq 0%
Exercise date (EU): tn T Exercise dates (US): tk Tk{n

Table 2: Product description.

Remark. When the correlations ρdf and ρSd are equal to zero, the numerical computation of
probabilities rπ(m),k

i,j and rπ
(nm),k
i,j can be accelerated. Indeed, in the Markovian case, Equation (4.1)

can be rewritten as
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.

In that case, we can use the CDF of a correlated bivariate normal distribution, as detailed above
for the non-Markovian case in (4.6), for computing these probabilities in a very effective and
faster way rather than performing a Monte Carlo simulation.
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In the non-Markovian case, Equation (4.5) can be rewritten as
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where FZ p¨q is the CDF of a one-dimensional normal distribution, σ
Z1 is the standard deviation

of Z1 and σ
Z2 is the standard deviation of Z2. This remark allows us to drastically reduce the

computation time of the conditional probabilities in the case of zero correlations.

4.1 European Option

In this short section, we look at the pricing of European options. In this simple case, the
payoff hT pXT , YT q depends only on the maturity date T , and the random variables pXT , YT q
(see (2.3)). We the consider the algorithm of section 3.3 with two dates t0 “ 0 and tn “ T
(n “ 1) in the recursion (3.11) (see also (4.5)). Note that in this European pricing problem,
there is no systematic error induced by the non-markovianity of the couple pXn, Ynq. In other
words, the error term E(nm)

n pnq is equals to zero in Theorem 3.4.
In the case of the European options, we have a closed-form formula for the price of (2.1).

The benchmark price is computed using the rewriting of (2.1) as a sum of Calls: at a time tk,
the payoff can be expressed as

ψtkpStkq “ min

ˆ

max

ˆ

Cf ptkq

S0
Stk ´ Cdptkq,Floorptkq

˙

,Capptkq
˙

“ Floorptkq ´ akpStk ´K
1
kq` ` akpStk ´K

2
kq`

with ak “
Cf ptkq

S0
, K1

k “
Capptkq ` Cdptkq

Cf ptkq
ˆ S0 and K2

k “
Floorptkq ` Cdptkq

Cf ptkq
ˆ S0 and the

closed-form formula for the price of a Call is detailed in Appendix B. The exact prices are
summarised in Table 3.

Zero correlation case Correlated case

T
σ

50 bps 500 bps 50 bps 500 bps

2Y 2.171945242 2.159404007 2.173803852 2.185536786

5Y 1.630435483 1.539295559 1.636518082 1.652226813

10Y 1.127330259 0.8013151892 1.141944391 1.103531914

20Y 0.5953823852 0.07313312587 0.6262982227 0.3764765391

Table 3: Prices given by closed-form formula of European options (σd “ σf “ σ).

We compute the relative error between the price computed by the 2d–quantization with N
points denoted pV N

0 and the exact price V0 defined by ppV N
0 ´ V0q{V0. The size N “ NX ˆ NY

of the product quantizer, and the associated computation times, needed for a 1 bps relative error
are summarised in Table 4.
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Zero correlation case Correlated case

T
σ

50 bps 500 bps 50 bps 500 bps

2Y 1 ms (32000) 4 ms (32000) 71 ms (64000) 34 ms (32000)

5Y 4 ms (32000) 6 ms (32000) 31 ms (32000) 31 ms (32000)

10Y 4 ms (32000) 3 ms (32000) 32 ms (32000) 139 ms (128000)

20Y 2 ms (32000) 2 ms (32000) 54 ms (32000) 2147 ms (2048000)

Table 4: Times in milliseconds needed for reaching a 1 bps precision for European options pricing,
in parenthesis, the size N of the grid (σd “ σf “ σ).

It is noteworthy that in the zero correlation case a relative error of 1 bps is very quickly reached,
even for high values of σd and σf . Indeed in this special case, it suffices to take N “ 32 000
to achieve a precision of 1 bps. In the correlated case with values σd “ σf “ 50 bps (order of
magnitude of market values), the pricing by quantization is also very efficient.

4.2 Bermudan option

Now, we compare the asymptotic behaviour of both approaches (Markovian case and Non-
Markovian case) when pricing Bermudan PRDC options. The following figures represent the
price and the rescaled difference of the prices given by the two approaches as a function of N ,
which is the size of the product quantizer at each date (in two dimensions: N “ NX ˆNY and
in four dimensions N “ NXˆNW f

ˆNY ˆNW d). The financial products we consider are yearly
exercisable Bermudan options with different values for the maturity date (2 years, 5 years, 10
years and 20 years) and the domestic/foreign volatilities (50 bps and 500 bps). The Bermudan
options we consider can be exercised every year, so the number n of iterations in the dynamic
programming satisfies n “M ` 1 where M is the maturity date, M P t2, 5, 10, 20u.

When using domestic and foreign volatilities close to market values, we observe numerically
that the non-Markovian method converges a lot faster than the Markovian one for a given
complexity. However both methods do not converge to the same value (see Figures 3a, 3b, 3c),
which is consistent with the results we found in Theorems 3.3 and 3.4. On each plot of Figure 3,
we observe that the red curve (non-Markovian method in 2d) stabilizes very quickly while the
blue curve (Markovian method in 4d) takes time to stabilize. From a large N , the blue curve
decreases very slowly towards an asymptotic value which represents the price of the product.
The convergence is fast in the non-Markovian case because the dimension of the problem is 2,
and slower in the Markovian case because the dimension is 4.
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Figure 3: σd “ σf “ 50 bps – Prices with the two methods for 2Y, 5Y, 10Y and 20Y yearly
exercisable Bermudan options (zero correlation case).

In Figure 4, we display the relative differences |pV (nm)
0 ´ pV

(m)
0 |{V

(m)
0 (the rescaled absolute

errors between prices given by the non-Markovian method and the Markovian one) between the
two methods, as a function of N . We then approximate the so-called relative systematic error
(3.14) by |pV (nm)

0 ´ pV
(m)

0 |{V
(m)

0 for N large enough. This error, for different maturity dates, can
be read in Figure 4 for N “ 1 000 000. Note that this relative systematic error is negligible for
theses values of σf “ σd “ 50 bps. It is at most 5 bps for a 20-year annual Bermudan option.

Hence, in the case of standard market of values for the volatilities, one should prefer the
non-Markovian methodology when considering to evaluate Bermudan options.
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Figure 4: σd “ σf “ 50 bps – Relative differences between the two methods for 2Y, 5Y, 10Y and
20Y yearly exercisable Bermudan options (zero correlation case).

26



When we consider higher values the volatilities, σd “ σf “ 500 bps, as expected the non-
Markovian methodology produces a systematic error bigger than the case where σd “ σf “ 50 bps

(see Figures 5a, 5b, 5c and 6). The relative systematic errors between the two methods are
reasonable: less than 0.1% for expiry 2 years, 0.4% for 5 years, around 1.1% for 10 years and
1.6% for 20 years. Again, one has to bear in mind that these volatilities are not at the scale of
those observed on the market. We chose to display these numerical results in order to illustrate
the limitations of the non-Markovian methodology and to push to its limits.
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Figure 5: σd “ σf “ 500 bps – Prices with the two methods for 2Y, 5Y, 10Y and 20Y yearly
exercisable Bermudan options (zero correlation case).
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Figure 6: σd “ σf “ 500 bps – Relative differences between the two methods for 2Y, 5Y, 10Y and
20Y yearly exercisable Bermudan options (zero correlation case).

27



We are now interested in the speed of convergence of the two algorithms. For that we consider
the number N which must be chosen so that the error is in a 5 bps band around the asymptotic
value (pV (m),8

0 and pV
(nm),8

0 respectively) approached with N “ 1 000 000. More precisely in
Table 5, we reference the time needed for reaching the asymptotic price with a 5 bps precision for
each algorithm (the size N of the grid is mintN,@M ě N, |pV

(m),M
0 ´ pV

(m),8
0 |{pV

(m),8
0 ă 5 bpsu

and mintN,@M ě N, |pV
(nm),M

0 ´ pV
(nm),8

0 |{pV
(nm),8

0 ă 5 bpsu respectively). The non-Markovian
method converges very quickly and attains better precision than a relative precision of 5 bps in
a few milliseconds, at most 7 ms. This is a very well feature of this algorithm. The Markovian
one, which is in dimension 4, converges slowly.

Non-Markovian – 2d Markovian – 4d

T
σ

50 bps 500 bps 50 bps 500 bps

2Y 1 ms (1000) 1 ms (1000) 25 ms (8000) 4 ms (1000)

5Y 3 ms (1000) 4 ms (1000) 98 ms (8000) 1903 ms (64000)

10Y 7 ms (1000) 7 ms (1000) 468 ms (16000) 3850 ms (64000)

20Y 17 ms (1000) 15 ms (1000) 8076 ms (64000) 28307 ms (128000)

Table 5: Times in milliseconds needed for reaching the asymptotic price of the algorithm with a
5 bps relative precision (zero correlation case). In parenthesis, the size N of the grid at each time
step.

In the correlated case, we choose to show only the asymptotic behaviour of the non-Markovian
method (2d). Indeed, if we want to use the Markovian approach, we need to compute the
transition probabilities using a Monte Carlo simulation which is a major drawback for the method.

Figures 7a, 7b and 7c display the price given by the numerical method as a function of N
and Table 6 summarises the computation time needed in order to do better than a 5 bps relative
precision (error relative to the asymptotic value of the algorithm pV

(nm),8
0 ).
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Figure 7: σd “ σf “ 50 bps – Price of 2Y, 5Y, 10Y and 20Y yearly exercisable Bermudan options
using the non-Markovian method (correlated case).

Non-Markovian – 2d

T
σ

50 bps

2Y 122 ms (1000)

5Y 553 ms (1000)

10Y 1283 ms (1000)

20Y 2870 ms (1000)

Table 6: Times in milliseconds needed for reaching the asymptotic price of the algorithm with a
3 bps relative precision (correlated case). In parenthesis, the size N of the grid at each time step.

Conclusion

We were looking for a numerical method able to produce accurate prices of Bermudan PRDC
options with a 3-factor model in a very short time because the pricing of such products arises in a
more complex framework: the computation of counterparty risk measures, also called xVA’s. We
proposed two numerical methods based on product optimal quantization with a preference for
the non-Markovian one. Indeed, even if we introduce a systematic error with our approximation,
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the error is controlled, as long as the volatilities of the domestic and foreign interest rates stay
reasonable. Moreover, the numerical tests we conducted confirmed that idea: we are able to
produce prices of Bermudan options in the 3-factor model in a fast and accurate way.
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Appendices
A W f is a Brownian motion under the domestic risk-neutral mea-

sure
Let pĂW f q a rP-Brownian motion. In this section, we show that the process W f defined by

dW f
s “ dĂW f

s ` ρSfσSds (A.1)

is a P-Brownian motion.
First, we define the following change of numéraire, where rP is the foreign risk-neutral probability and

P is the domestic risk-neutral probability,r

drP “
ST
S0

exp

ˆ

´

ż T

0

rdsds

˙

exp

ˆ
ż T

0

rfs ds

˙

dP

“ exp

ˆ

σSW
S
T ´

σ2
S

2
T

˙

dP

or equivalently

dP “ exp

ˆ

´ σSW
S
T `

σ2
S

2
T

˙

drP

“ exp

ˆ

´ σSpW
S
T ´ σST q ´

σ2
S

2
T

˙

drP

“ exp

ˆ

´ σSĂW
S
T ´

σ2
S

2
T

˙

drP

(A.2)

where ĂWS is a rP-Brownian motion defined by dĂWS
t “ dWS

t ´σSdt. More details concerning the definition
of the foreign risk-neutral probability can be found in the Chapter 9 of [Shr04].

Now, we are looking for q P R such that dW f
s “ dĂW f

s ´ qdt is a P-Brownian motion. Let λ P R and
@t ą s

E
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

| Fs
ı

“ rE
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

´σSpĂW
S
T ´

ĂWS
s q´

σ2S
2 pT´sq | Fs

ı

“ rE
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

´σSpĂW
S
t ´

ĂWS
s q´

σ2S
2 pt´sq | Fs

ı

“ e´λqpt´sq´
σ2S
2 pt´sq rE

”

eλp
ĂW f
t ´

ĂW f
s q´σSp

ĂWS
t ´

ĂWS
s q | Fs

ı

“ e´λqpt´sq´
σ2S
2 pt´sq e

λ2

2 pt´sq´λσSρSf pt´sq`
σ2S
2 pt´sq

“ e
λ2

2 pt´sq e´λqpt´sq´λσSρSf pt´sq

“ e
λ2

2 pt´sq

(A.3)

the last equality is ensured if and only if

0 “ ´λqpt´ sq ´ λσSρSf pt´ sq ðñ q “ ´σSρSf . (A.4)

Hence, W f defined by
dW f

s “ dĂW f
s ` ρSfσSds

is a P-Brownian motion.

B FX Derivatives - European Call
The payoff at maturity t of a European Call on FX rate is given by

pSt ´Kq`
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with K the strike and St the FX rate at time t.
Our aim will be to evaluate V0

V0 “ E
”

e´
şt
0
rdsdspSt ´Kq`

ı

.

Proposition B.1. If we consider a 3-factor model on Foreign Exchange and Zero-coupon as defined in
(1.1), V0 is given by3

V0 “ S0P
f p0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

` µp0, tq

σp0, tq

¸

´KP dp0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

´ µp0, tq

σp0, tq

¸

with

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tqds´ ρfdσf ps, tqσdps, tq
˘

ds

and
σ2p0, tq “ 2µp0, tq.

Proof. In this part, we want to evaluate

V0 “ E
”

e´
şt
0
rdsdspSt ´Kq`

ı

.

If we consider a 3-factor model on Foreign Exchange and Zero-coupon as defined in (1.1), we have

V0 “ E
”

e´
şt
0
rdsdspSt ´Kq`

ı

“ E
”

`

e´
şt
0
rdsds St ´ e´

şt
0
rdsdsK

˘

`

ı

“ E
”

`

e´
şt
0
rdsds St ´ e´

şt
0
rdsdsK

˘

1tStěKu

ı

“ E
”

e´
şt
0
rdsds St 1tStěKu

ı

´K E
”

e´
şt
0
rdsds 1tStěKu

ı

.

We focus on the first term
K E

”

e´
şt
0
rdsds 1tStěKu

ı

. (B.1)

We do the following change of numéraire:
drQ

dP
“

rZt
rZ0

with
$

&

%

rZt “ exp
´

rYt ´
1

2
ă rY , rY ąt

¯

,

rZ0 “ 1

where rYt “
şt

0
σdps, tqdW

d
s and ă rY , rY ąt“

şt

0
σ2
dps, tqds.

Hence, we can define the following Brownian Motions ĂW d, ĂW f , ĂWS under rQ:

dĂW d
s “ dW d

s ´ d ă Y,W d ąs “ dW d
s ´ σdps, tqds,

dĂW f
s “ dW f

s ´ d ă Y,W f ąs “ dW f
s ´ ρfdσdps, tqds,

dĂWS
s “ dWS

s ´ d ă Y,WS ąs “ dWS
s ´ ρSdσdps, tqds

3We ignore the settlements details in the present paper in order to alleviate the notations but the formula can
easily be extended to take them into account.
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and St becomes

St “ S0 exp

ˆ
ż t

0

ˆ

rds ´ r
f
s ´

σ2
Spsq

2

˙

ds`

ż t

0

σSpsqdW
S
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ
ż t

0

´
1

2

`

σ2
Spsq ` σ

2
f ps, tq ´ σ

2
dps, tq

˘

´ ρSfσSpsqσf ps, tq ds

˙

ˆ exp

ˆ
ż t

0

σSpsqdW
S
s `

ż t

0

σf ps, tqdW
f
s ´

ż t

0

σdps, tqdW
d
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ

´

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

˙

ˆ exp

ˆ

´

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

˙

ˆ exp

ˆ
ż t

0

σSpsqdĂW
S
s `

ż t

0

σf ps, tqdĂW
f
s ´

ż t

0

σdps, tqdĂW
d
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ

´ µp0, tq `

ż t

0

σSpsqdĂW
S
s `

ż t

0

σf ps, tqdĂW
f
s ´

ż t

0

σdps, tqdĂW
d
s

˙

.

Hence, as exp
´

´
şt

0
rdsds

¯

“ P dp0, tq ˆ rZt, (B.1) becomes

K E
”

e´
şt
0
rdsds 1tStěKu

ı

“ KP dp0, tqE
rQ
”

1tStěKu

ı

“ KP dp0, tqrQpSt ě Kq

“ KP dp0, tqrQ

˜

Z ě
log

´

KPdp0,tq
S0P f p0,tq

¯

` µp0, tq

σp0, tq

¸

“ KP dp0, tqrQ

˜

Z ď
log

´

S0P
f
p0,tq

KPdp0,tq

¯

´ µp0, tq

σp0, tq

¸

“ KP dp0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

´ µp0, tq

σp0, tq

¸

where Z „ N p0, 1q with

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tqds´ ρfdσf ps, tqσdps, tq
˘

ds,

σ2p0, tq “ Var

ˆ
ż t

0

σSpsqdĂW
S
s `

ż t

0

σf ps, tqdĂW
f
s ´

ż t

0

σdps, tqdĂW
d
s

˙

“ Var

ˆ
ż t

0

σSpsqdĂW
S
s

˙

`Var

ˆ
ż t

0

σf ps, tqdĂW
f
s

˙

`Var

ˆ
ż t

0

σdps, tqdĂW
d
s

˙

` 2Cov

ˆ
ż t

0

σSpsqdĂW
S
s ,

ż t

0

σf ps, tqdĂW
f
s

˙

´ 2Cov

ˆ
ż t

0

σSpsqdĂW
S
s ,

ż t

0

σdps, tqdĂW
d
s

˙

´ 2Cov

ˆ
ż t

0

σf ps, tqdĂW
f
s ,

ż t

0

σdps, tqdĂW
d
s

˙

“

ż t

0

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

` 2

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds.
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Now, we deal with the term

E
”

e´
şt
0
rdsds St 1tStěKu

ı

“ P dp0, tqE
rQ
“

St 1tStěKu
‰

(B.2)

using directly the formula of the first partial moment of a log-normal random variable. Let X „

Log-N pµ, σ2q, then

E
“

X 1tXěxu
‰

“ eµ`
σ2

2 N
ˆ

µ` σ2 ´ logpxq

σ

˙

.

Finally, as St “
S0P

f
p0,tq

Pdp0,tq
X with X

rQ
„ Log-N p´µp0, tq, σ2p0, tqq, we get

(B.2) “ S0P
f p0, tqE

rQ

«

X 1!
Xě

KPdp0,tq

S0P
f p0,tq

)

ff

“ S0P
f p0, tq e´µp0,tq`

σ2p0,tq

2 N

˜

´µp0, tq ` σ2p0, tq ´ log
´

KPdp0,tq
S0P f p0,tq

¯

σp0, tq

¸

“ S0P
f p0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

` µp0, tq

σp0, tq

¸

noticing that µp0, tq “ σ2
p0,tq
2 .

Finally, we get

V0 “ E
”

e´
şt
0
rdsdspSt ´Kq`

ı

“ E
”

e´
şt
0
rdsds St 1tStěKu

ı

´K E
”

e´
şt
0
rdsds 1tStěKu

ı

“ S0P
f p0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

` µp0, tq

σp0, tq

¸

´KP dp0, tqN

˜

log
´

S0P
f
p0,tq

KPdp0,tq

¯

´ µp0, tq

σp0, tq

¸

.

Special case of constant volatility: σSpsq “ σS , σdps, tq “ σd ˆ pt´ sq σf ps, tq “ σf ˆ pt´ sq

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

“

ż t

0

1

2

`

σ2
S ` σ

2
f pt´ sq

2 ` σ2
dpt´ sq

2
˘

ds

`

ż t

0

ρSfσSσf pt´ sq ´ ρSdσSσdpt´ sq ´ ρfdσfσdpt´ sq
2ds

“
1

2

ˆ

σ2
St` σ

2
f

t3

3
` σ2

d

t3

3

˙

` ρSfσSσf
t2

2
´ ρSdσSσd

t2

2
´ ρfdσfσd

t3

3
,

σ2p0, tq “

ż t

0

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

` 2

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

“ 2µp0, tq.
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